#include "types.h" #include "param.h" #include "memlayout.h" #include "riscv.h" #include "spinlock.h" #include "proc.h" #include "defs.h" struct proc proc[NPROC]; struct proc *initproc; extern void forkret(void); void freeproc(struct proc *p); extern char trampoline[]; // trampoline.S // helps ensure that wakeups of wait()ing // parents are not lost. helps obey the // memory model when using p->parent. // must be acquired before any p->lock. struct spinlock wait_lock; // Allocate a page for each process's kernel stack. // Map it high in memory, followed by an invalid // guard page. void proc_mapstacks(pagetable_t kpgtbl) { struct proc *p; for(p = proc; p < &proc[NPROC]; p++) { char *pa = kalloc(); if(pa == 0) panic("kalloc"); uint64 va = KSTACK((int) (p - proc)); kvmmap(kpgtbl, va, (uint64)pa, PGSIZE, PTE_R | PTE_W); } } // initialize the proc table. void procinit(void) { struct proc *p; initlock(&wait_lock, "wait_lock"); for(p = proc; p < &proc[NPROC]; p++) { initlock(&p->lock, "proc"); p->state = UNUSED; p->kstack = KSTACK((int) (p - proc)); } } // Look in the process table for an UNUSED proc. // If found, initialize state required to run in the kernel, // and return with p->lock held. // If there are no free procs, or a memory allocation fails, return 0. struct proc *allocproc(void); // Create a user page table for a given process, with no user memory, // but with trampoline and trapframe pages. pagetable_t proc_pagetable(struct proc *p) { pagetable_t pagetable; // An empty page table. pagetable = uvmcreate(); if(pagetable == 0) return 0; // map the trampoline code (for system call return) // at the highest user virtual address. // only the supervisor uses it, on the way // to/from user space, so not PTE_U. if(mappages(pagetable, TRAMPOLINE, PGSIZE, (uint64)trampoline, PTE_R | PTE_X) < 0){ uvmfree(pagetable, 0); return 0; } // map the trapframe page just below the trampoline page, for // trampoline.S. if(mappages(pagetable, TRAPFRAME, PGSIZE, (uint64)(p->trapframe), PTE_R | PTE_W) < 0){ uvmunmap(pagetable, TRAMPOLINE, 1, 0); uvmfree(pagetable, 0); return 0; } return pagetable; } // Free a process's page table, and free the // physical memory it refers to. void proc_freepagetable(pagetable_t pagetable, uint64 sz) { uvmunmap(pagetable, TRAMPOLINE, 1, 0); uvmunmap(pagetable, TRAPFRAME, 1, 0); uvmfree(pagetable, sz); } // a user program that calls exec("/init") // assembled from ../user/initcode.S // od -t xC ../user/initcode uchar initcode[] = { 0x17, 0x05, 0x00, 0x00, 0x13, 0x05, 0x45, 0x02, 0x97, 0x05, 0x00, 0x00, 0x93, 0x85, 0x35, 0x02, 0x93, 0x08, 0x70, 0x00, 0x73, 0x00, 0x00, 0x00, 0x93, 0x08, 0x20, 0x00, 0x73, 0x00, 0x00, 0x00, 0xef, 0xf0, 0x9f, 0xff, 0x2f, 0x69, 0x6e, 0x69, 0x74, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // Set up first user process. void userinit(void) { struct proc *p; p = allocproc(); initproc = p; // allocate one user page and copy initcode's instructions // and data into it. uvmfirst(p->pagetable, initcode, sizeof(initcode)); p->sz = PGSIZE; // prepare for the very first "return" from kernel to user. p->trapframe->epc = 0; // user program counter p->trapframe->sp = PGSIZE; // user stack pointer safestrcpy(p->name, "initcode", sizeof(p->name)); p->cwd = namei("/"); p->state = RUNNABLE; release(&p->lock); } // Create a new process, copying the parent. // Sets up child kernel stack to return as if from fork() system call. int fork(void) { int i, pid; struct proc *np; struct proc *p = myproc(); // Allocate process. if((np = allocproc()) == 0){ return -1; } // Copy user memory from parent to child. if(uvmcopy(p->pagetable, np->pagetable, p->sz) < 0){ freeproc(np); release(&np->lock); return -1; } np->sz = p->sz; // copy saved user registers. *(np->trapframe) = *(p->trapframe); // Cause fork to return 0 in the child. np->trapframe->a0 = 0; // increment reference counts on open file descriptors. for(i = 0; i < NOFILE; i++) if(p->ofile[i]) np->ofile[i] = filedup(p->ofile[i]); np->cwd = idup(p->cwd); safestrcpy(np->name, p->name, sizeof(p->name)); pid = np->pid; release(&np->lock); acquire(&wait_lock); np->parent = p; release(&wait_lock); acquire(&np->lock); np->state = RUNNABLE; release(&np->lock); return pid; } // Pass p's abandoned children to init. // Caller must hold wait_lock. void reparent(struct proc *p); // Exit the current process. Does not return. // An exited process remains in the zombie state // until its parent calls wait(). void exit(int status) { struct proc *p = myproc(); if(p == initproc) panic("init exiting"); // Close all open files. for(int fd = 0; fd < NOFILE; fd++){ if(p->ofile[fd]){ struct file *f = p->ofile[fd]; fileclose(f); p->ofile[fd] = 0; } } begin_op(); iput(p->cwd); end_op(); p->cwd = 0; acquire(&wait_lock); // Give any children to init. reparent(p); // Parent might be sleeping in wait(). wakeup(p->parent); acquire(&p->lock); p->xstate = status; p->state = ZOMBIE; release(&wait_lock); // Jump into the scheduler, never to return. sched(); panic("zombie exit"); } // Wait for a child process to exit and return its pid. // Return -1 if this process has no children. int wait(uint64 addr) { struct proc *pp; int havekids, pid; struct proc *p = myproc(); acquire(&wait_lock); for(;;){ // Scan through table looking for exited children. havekids = 0; for(pp = proc; pp < &proc[NPROC]; pp++){ if(pp->parent == p){ // make sure the child isn't still in exit() or swtch(). acquire(&pp->lock); havekids = 1; if(pp->state == ZOMBIE){ // Found one. pid = pp->pid; if(addr != 0 && copyout(p->pagetable, addr, (char *)&pp->xstate, sizeof(pp->xstate)) < 0) { release(&pp->lock); release(&wait_lock); return -1; } freeproc(pp); release(&pp->lock); release(&wait_lock); return pid; } release(&pp->lock); } } // No point waiting if we don't have any children. if(!havekids || killed(p)){ release(&wait_lock); return -1; } // Wait for a child to exit. sleep_lock(p, &wait_lock); // DOC: wait-sleep } } // Per-CPU process scheduler. // Each CPU calls scheduler() after setting itself up. // Scheduler never returns. It loops, doing: // - choose a process to run. // - swtch to start running that process. // - eventually that process transfers control // via swtch back to the scheduler. void scheduler(void) { struct proc *p; struct cpu *c = mycpu(); c->proc = 0; for(;;){ // Avoid deadlock by ensuring that devices can interrupt. intr_on(); for(p = proc; p < &proc[NPROC]; p++) { acquire(&p->lock); if(p->state == RUNNABLE) { // Switch to chosen process. It is the process's job // to release its lock and then reacquire it // before jumping back to us. p->state = RUNNING; c->proc = p; swtch(&c->context, &p->context); // Process is done running for now. // It should have changed its p->state before coming back. c->proc = 0; } release(&p->lock); } } } // Switch to scheduler. Must hold only p->lock // and have changed proc->state. Saves and restores // intena because intena is a property of this // kernel thread, not this CPU. It should // be proc->intena and proc->noff, but that would // break in the few places where a lock is held but // there's no process. void sched(void); // A fork child's very first scheduling by scheduler() // will swtch to forkret. void forkret(void) { static int first = 1; // Still holding p->lock from scheduler. release(&myproc()->lock); if (first) { // File system initialization must be run in the context of a // regular process (e.g., because it calls sleep), and thus cannot // be run from main(). first = 0; fsinit(ROOTDEV); } usertrapret(); } // Atomically release lock and sleep on chan. // Reacquires lock when awakened. void sleep_lock(void *chan, struct spinlock *lk); // Wake up all processes sleeping on chan. // Must be called without any p->lock. void wakeup(void *chan) { struct proc *p; for(p = proc; p < &proc[NPROC]; p++) { if(p != myproc()){ acquire(&p->lock); if(p->state == SLEEPING && p->chan == chan) { p->state = RUNNABLE; } release(&p->lock); } } } // Kill the process with the given pid. // The victim won't exit until it tries to return // to user space (see usertrap() in trap.c). int kill(int pid); void setkilled(struct proc *p); int killed(struct proc *p); // Copy to either a user address, or kernel address, // depending on usr_dst. // Returns 0 on success, -1 on error. int either_copyout(int user_dst, uint64 dst, void *src, uint64 len) { struct proc *p = myproc(); if(user_dst){ return copyout(p->pagetable, dst, src, len); } else { memmove((char *)dst, src, len); return 0; } } // Copy from either a user address, or kernel address, // depending on usr_src. // Returns 0 on success, -1 on error. int either_copyin(void *dst, int user_src, uint64 src, uint64 len) { struct proc *p = myproc(); if(user_src){ return copyin(p->pagetable, dst, src, len); } else { memmove(dst, (char*)src, len); return 0; } } // Print a process listing to console. For debugging. // Runs when user types ^P on console. // No lock to avoid wedging a stuck machine further. void procdump(void) { static char *states[] = { [UNUSED] "unused", [USED] "used", [SLEEPING] "sleep ", [RUNNABLE] "runble", [RUNNING] "run ", [ZOMBIE] "zombie" }; struct proc *p; char *state; printstr("\n"); for(p = proc; p < &proc[NPROC]; p++){ if(p->state == UNUSED) continue; if(p->state >= 0 && p->state < NELEM(states) && states[p->state]) state = states[p->state]; else state = "???"; printint(p->pid); printstr(" "); printstr(state); printstr(" "); printstr(p->name); printstr("\n"); } }