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Chapter 6

Buffer cache

One of an operating system’s central roles is to enable safe cooperation between
processes sharing a computer. First, it must isolate the processes from each other, so
that one errant process cannot harm the operation of others. To do this, xv6 uses the
x86 hardware’s memory segmentation (Chapter 2). Second, an operating system must
provide controlled mechanisms by which the now-isolated processes can overcome the
isolation and cooperate. To do this, xv6 provides the concept of files. One process
can write data to a file, and then another can read it; processes can also be more tight-
ly coupled using pipes. The next four chapters examine the implementation of files,
working up from individual disk blocks to disk data structures to directories to system
calls. This chapter examines the disk driver and the buffer cache, which together form
the bottom layer of the file implementation.

The disk driver copies data from and back to the disk, The buffer cache manages
these temporary copies of the disk blocks. Caching disk blocks has an obvious perfor-
mance benefit: disk access is significantly slower than memory access, so keeping fre-
quently-accessed disk blocks in memory reduces the number of disk accesses and
makes the system faster. Even so, performance is not the most important reason for
the buffer cache. When two different processes need to edit the same disk block (for
example, perhaps both are creating files in the same directory), the disk block is shared
data, just like the process table is shared among all kernel threads in Chapter 5. The
buffer cache serializes access to the disk blocks, just as locks serialize access to in-
memory data structures. Like the operating system as a whole, the buffer cache’s fun-
damental purpose is to enable safe cooperation between processes.

Code: Data structures

Disk hardware traditionally presents the data on the disk as a numbered sequence
of 512-byte blocks called sectors: sector 0 is the first 512 bytes, sector 1 is the next,
and so on. The disk drive and buffer cache coordinate the use of disk sectors with a
data structure called a buffer, struct buf (3550). Each buffer represents the contents of
one sector on a particular disk device. The dev and sector fields give the device and
sector number and the data field is an in-memory copy of the disk sector. The data

is often out of sync with the disk: it might have not yet been read in from disk, or it
might have been updated but not yet written out. The flags track the relationship
between memory and disk: the B_VALID flag means that data has been read in, and
the B_DIRTY flag means that data needs to be written out. The B_BUSY flag is a lock
bit; it indicates that some process is using the buffer and other processes must not.
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When a buffer has the B_BUSY flag set, we say the buffer is locked.

Code: Disk driver

The IDE device provides access to disks connected to the PC standard IDE con-
troller. IDE is now falling out of fashion in favor of SCSI and SATA, but the interface
is very simple and lets us concentrate on the overall structure of a driver instead of
the details of a particular piece of hardware.

The kernel initializes the disk driver at boot time by calling ideinit (3851) from
main (1366). Ideinit initializes idelock (3822) and then must prepare the hardware.
In Chapter 3, xv6 disabled all hardware interrupts. Ideinit calls picenable and
ioapicenable to enable the IDE_IRQ interrupt (3856-3857). The call to picenable en-
ables the interrupt on a uniprocessor; ioapicenable enables the interrupt on a multi-
processor, but only on the last CPU (ncpu-1): on a two-processor system, CPU 1 han-
dles disk interrupts.

Next, ideinit probes the disk hardware. It begins by calling idewait (3858) to
wait for the disk to be able to accept commands. The disk hardware presents status
bits on port 0x1f7, as we saw in chapter 1. Idewait (3832) polls the status bits until
the busy bit (IDE_BSY) is clear and the ready bit (IDE_DRDY) is set.

Now that the disk controller is ready, ideinit can check how many disks are
present. It assumes that disk 0 is present, because the boot loader and the kernel were
both loaded from disk 0, but it must check for disk 1. It writes to port 0x1f6 to select
disk 1 and then waits a while for the status bit to show that the disk is ready (3860-

3867). If not, ideinit assumes the disk is absent.
After ideinit, the disk is not used again until the buffer cache calls iderw,

which updates a locked buffer as indicated by the flags. If B_DIRTY is set, iderw

writes the buffer to the disk; if B_VALID is not set, iderw reads the buffer from the
disk.

Disk accesses typically take milliseconds, a long time for a processor. In Chapter
1, the boot sector issues disk read commands and reads the status bits repeatedly until
the data is ready. This polling or busy waiting is fine in a boot sector, which has noth-
ing better to do. In an operating system, however, it is more efficient to let another
process run on the CPU and arrange to receive an interrupt when the disk operation
has completed. Iderw takes this latter approach, keeping the list of pending disk re-
quests in a queue and using interrupts to find out when each request has finished. Al-
though iderw maintains a queue of requests, the simple IDE disk controller can only
handle one operation at a time. The disk driver maintains the invariant that it has
sent the buffer at the front of the queue to the disk hardware; the others are simply
waiting their turn.

Iderw (3954) adds the buffer b to the end of the queue (3967-3971). If the buffer is
at the front of the queue, iderw must send it to the disk hardware by calling
idestart (3924-3926); otherwise the buffer will be started once the buffers ahead of it
are taken care of.

Idestart (3875) issues either a read or a write for the buffer’s device and sector,
according to the flags. If the operation is a write, idestart must supply the data now
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(3889) and the interrupt will signal that the data has been written to disk. If the opera-
tion is a read, the interrupt will signal that the data is ready, and the handler will read
it.

Having added the request to the queue and started it if necessary, iderw must
wait for the result. As discussed above, polling does not make efficient use of the
CPU. Instead, iderw sleeps, waiting for the interrupt handler to record in the buffer’s
flags that the operation is done (3979-3980). While this process is sleeping, xv6 will
schedule other processes to keep the CPU busy.

Eventually, the disk will finish its operation and trigger an interrupt. As we saw
in Chapter 3, trap will call ideintr to handle it (3174). Ideintr (3902) consults the
first buffer in the queue to find out which operation was happening. If the buffer was
being read and the disk controller has data waiting, ideintr reads the data into the
buffer with insl (3915-3917). Now the buffer is ready: ideintr sets B_VALID, clears
B_DIRTY, and wakes up any process sleeping on the buffer (3919-3922). Finally, ideintr
must pass the next waiting buffer to the disk (3924-3926).

Code: Interrupts and locks

On a multiprocessor, ordinary kernel code can run on one CPU while an inter-
rupt handler runs on another. If the two code sections share data, they must use locks
to synchronize access to that data. For example, iderw and ideintr share the request
queue and use idelock to synchronize.

Interrupts can cause concurrency even on a single processor: if interrupts are en-
abled, kernel code can be stopped at any moment to run an interrupt handler instead.
Suppose iderw held the idelock and then got interrupted to run ideintr. Ideintr

would try to lock idelock, see it was held, and wait for it to be released. In this situ-
ation, idelock will never be released—only iderw can release it, and iderw will not
continue running until ideintr returns—so the processor, and eventually the whole
system, will deadlock. To avoid this situation, if a lock is used by an interrupt handler,
a processor must never hold that lock with interrupts enabled. Xv6 is more conserva-
tive: it never holds any lock with interrupts enabled. It uses pushcli (1655) and pop-

cli (1666) to manage a stack of ‘‘disable interrupts’’ operations (cli is the x86 instruc-
tion that disables interrupts, as we saw in Chapter 1). Acquire calls pushcli before
trying to acquire a lock (1575), and release calls popcli after releasing the lock (1621).
It is important that acquire call pushcli before the xchg that might acquire the lock
(1582). If the two were reversed, there would be a few instruction cycles when the lock
was held with interrupts enabled, and an unfortunately timed interrupt would deadlock
the system. Similarly, it is important that release call popcli only after the xchg

that releases the lock (1582). These races are similar to the ones involving holding (see
Chapter 4).

Code: Buffer cache

As discussed at the beginning of this chapter, the buffer cache synchronizes access
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to disk blocks, making sure that only one kernel process at a time can edit the file sys-
tem data in any particular buffer. The buffer cache does this by blocking processes in
bread (pronounced b-read): if two processes call bread with the same device and
sector number of an otherwise unused disk block, the call in one process will return a
buffer immediately; the call in the other process will not return until the first process
has signaled that it is done with the buffer by calling brelse (b-release).

The buffer cache is a doubly-linked list of buffers. Binit, called by main (1363),
initializes the list with the NBUF buffers in the static array buf (4050-4059). All other ac-
cess to the buffer cache refer to the linked list via bcache.head, not the buf array.

Bread (4102) calls bget to get a locked buffer for the given sector (4106). If the
buffer needs to be read from disk, bread calls iderw to do that before returning the
buffer.

Bget (4066) scans the buffer list for a buffer with the given device and sector num-
bers (4073-4084). If there is such a buffer, bget needs to lock it before returning. If the
buffer is not in use, bget can set the B_BUSY flag and return (4076-4083). If the buffer is
already in use, bget sleeps on the buffer to wait for its release. When sleep returns,
bget cannot assume that the buffer is now available. In fact, since sleep released and
reacquired buf_table_lock, there is no guarantee that b is still the right buffer:
maybe it has been reused for a different disk sector. Bget has no choice but to start
over (4082), hoping that the outcome will be different this time.

If there is no buffer for the given sector, bget must make one, possibly reusing a
buffer that held a different sector. It scans the buffer list a second time, looking for a
block that is not busy: any such block can be used (4086-4088). Bget edits the block
metadata to record the new device and sector number and mark the block busy before
returning the block (4091-4093). Note that the assignment to flags not only sets the
B_BUSY bit but also clears the B_VALID and B_DIRTY bits, making sure that bread will
refresh the buffer data from disk rather than use the previous block’s contents.

Because the buffer cache is used for synchronization, it is important that there is
only ever one buffer for a particular disk sector. The assignments (4089-4091) are only
safe because bget’s first loop determined that no buffer already existed for that sector,
and bget has not given up buf_table_lock since then.

If all the buffers are busy, something has gone wrong: bget panics. A more
graceful response would be to sleep until a buffer became free, though there would be
a possibility of deadlock.

Once bread has returned a buffer to its caller, the caller has exclusive use of the
buffer and can read or write the data bytes. If the caller does write to the data, it must
call bwrite to flush the changed data out to disk before releasing the buffer. Bwrite

(4114) sets the B_DIRTY flag and calls iderw to write the buffer to disk.
When the caller is done with a buffer, it must call brelse to release it. (The name

brelse, a shortening of b-release, is cryptic but worth learning: it originated in Unix
and is used in BSD, Linux, and Solaris too.) Brelse (4124) moves the buffer from its
position in the linked list to the front of the list (4131-4136), clears the B_BUSY bit, and
wakes any processes sleeping on the buffer. Moving the buffer has the effect that the
buffers are ordered by how recently they were used (meaning released): the first buffer
in the list is the most recently used, and the last is the least recently used. The two
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loops in bget take advantage of this: the scan for an existing buffer must process the
entire list in the worst case, but checking the most recently used buffers first (starting
at bcache.head and following next pointers) will reduce scan time when there is
good locality of reference. The scan to pick a buffer to reuse picks the least recently
used block by scanning backward (following prev pointers); the implicit assumption is
that the least recently used buffer is the one least likely to be used again soon.

Real world

Actual device drivers are far more complex than the disk driver in this chapter,
but the basic ideas are the same: typically devices are slower than CPU, so the hard-
ware uses interrupts to notify the operating system of status changes. Modern disk
controllers typically accept multiple outstanding disk requests at a time and even re-
order them to make most efficient use of the disk arm. When disks were simpler, op-
erating system often reordered the request queue themselves, though reordering has
implications for file system consistency, as we will see in Chapter 8.

Other hardware is surprisingly similar to disks: network device buffers hold pack-
ets, audio device buffers hold sound samples, graphics card buffers hold video data and
command sequences. High-bandwidth devices—disks, graphics cards, and network
cards—often use direct memory access (DMA) instead of the explicit i/o (insl, out-
sl) in this driver. DMA allows the disk or other controllers direct access to physical
memory. The driver gives the device the physical address of the buffer’s data field and
the device copies directly to or from main memory, interrupting once the copy is com-
plete. Using DMA means that the CPU is not involved at all in the transfer, which
can be more efficient and is less taxing for the CPU’s memory caches.

The buffer cache in a real-world operating system is significantly more complex
than xv6’s, but it serves the same two purposes: caching and synchronizing access to
the disk. Xv6’s buffer cache, like V6’s, uses a simple least recently used (LRU) eviction
policy; there are many more complex policies that can be implemented, each good for
some workloads and not as good for others. A more efficient LRU cache would elimi-
nate the linked list, instead using a hash table for lookups and a heap for LRU evic-
tions.

In real-world operating systems, buffers typically match the hardware page size, so
that read-only copies can be mapped into a process’s address space using the paging
hardware, without any copying.

Exercises

1. Setting a bit in a buffer’s flags is not an atomic operation: the processor makes a
copy of flags in a register, edits the register, and writes it back. Thus it is important
that two processes are not writing to flags at the same time. The code in this chap-
ter edits the B_BUSY bit only while holding buflock but edits the B_VALID and
B_WRITE flags without holding any locks. Why is this safe?
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