
DRAFT as of February 19, 2011: Copyright 2009 Cox, Kaashoek, Morris

Chapter 9

Exec

Chapter 2 stopped with the initproc invoking the kernel’s exec system call. As a
result, we took detours into interrupts, multiprocessing, device drivers, and a file sys-
tem. With these taken care of, we can finally look at the implementation of exec. As
we saw in Chapter 0, exec replaces the memory and registers of the current process
with a new program, but it leaves the file descriptors, process id, and parent process
the same. Exec is thus little more than a binary loader, just like the one in the boot
sector from Chapter 1. The additional complexity comes from setting up the stack.
The user memory image of an executing process looks like:

640K: | |

| ... |

| heap |

| stack |

| data |

0: | text |

The heap is above the stack so that it can expand (with sbrk). The stack is a single
page—4096 bytes—long. Strings containing the command-line arguments, as well as
an array of pointers to them, are at the very top of the stack. Just under that the ker-
nel places values that allow a program to start at main as if the function call
main(argc, argv) had just started. Here are the values that exec places at the top of
the stack:

"argument0"

...

"argumentN" -- nul-terminated string

0 -- argv[argc]

address of argumentN

...

address of argument0 -- argv[0]

address of address of argument0 -- argv argument to main()

argc -- argc argument to main()

0xffffffff -- return PC for main() call

Code

When the system call arrives, syscall invokes sys_exec via the syscalls table (3400).
Sys_exec (5451) parses the system call arguments, as we saw in Chapter 3, and invokes
exec (5473).

1

Exec (5509) opens the named binary path using namei (5519) and then reads the
ELF header. Like the boot sector, it uses elf.magic to decide whether the binary is
an ELF binary (5524-5528). Then it allocates a new page table with no user mappings
with setupkvm (5530), allocates memory for each ELF segment with allocuvm (5542),
and loads each segment into memory with loaduvm (5544). allocuvm checks that the
virtual addresses requested are within the 640 kilobytes that user processes are allowed
to use. loaduvm (2753) uses walkpgdir to find the physical address of the allocated
memory at which to write each page of the ELF segment, and readi to read from the
file. The ELF file may contain data segments that contain global variables that should
start out zero, represented with a memsz that is greater than the segment’s filesz; the
result is that allocuvm allocates zeroed physical memory, but loaduvm does not copy
anything from the file.

Now exec allocates and initializes the user stack. It assumes that one page of
stack is enough. If not, copyout will return –1, as will exec. Exec first copies the ar-
gument strings to the top of the stack one at a time, recording the pointers to them in
ustack. It places a null pointer at the end of what will be the argv list passed to
main. The first three entries in ustack are the fake return PC, argc, and argv pointer.

During the preparation of the new memory image, if exec detects an error like
an invalid program segment, it jumps to the label bad, frees the new image, and re-
turns –1. Exec must wait to free the old image until it is sure that the system call will
succeed: if the old image is gone, the system call cannot return –1 to it. The only er-
ror cases in exec happen during the creation of the image. Once the image is com-
plete, exec can install the new image (5588) and free the old one (5589). Finally, exec
returns 0. Success!

Now the initcode (7400) is done. Exec has replaced it with the real /init

binary, loaded out of the file system. Init (7510) creates a new console device file if
needed and then opens it as file descriptors 0, 1, and 2. Then it loops, starting a con-
sole shell, handles orphaned zombies until the shell exits, and repeats. The system is
up.

Real world

Exec is the most complicated code in xv6 in and in most operating systems. It in-
volves pointer translation (in sys_exec too), many error cases, and must replace one
running process with another. Real world operationg systems have even more compli-
cated exec implementations. They handle shell scripts (see exercise below), more
complicated ELF binaries, and even multiple binary formats.

Exercises

1. Unix implementations of exec traditionally include special handling for shell scripts.
If the file to execute begins with the text #!, then the first line is taken to be a pro-
gram to run to interpret the file. For example, if exec is called to run myprog arg1

and myprog’s first line is #!/interp, then exec runs /interp with command line

2

/interp myprog arg1. Implement support for this convention in xv6.

3

