
DRAFT as of February 19, 2011: Copyright 2009 Cox, Kaashoek, Morris

Chapter 5

Scheduling

Any operating system is likely to run with more processes than the computer has
processors, and so some plan is needed to time share the processors between the pro-
cesses. An ideal plan is transparent to user processes. A common approach is to pro-
vide each process with the illusion that it has its own virtual processor, and have the
operating system multiplex multiple virtual processors on a single physical processor.

Xv6 adopts this approach. If two processes want to run on a single CPU, xv6
multiplexes them, switching many times per second between executing one and the
other. This multiplexing creates the illusion that each process has its own CPU, just as
xv6 used the memory allocator and hardware segmentation to create the illusion that
each process has its own memory.

Implementing multiplexing has a few challenges. First, how to switch from one
process to another? Xv6 uses the standard mechanism of context switching; although
the idea is simple, the code to implement is typically among the most opaque code in
an operating system. Second, how to do context switching transparently? Xv6 uses the
standard technique of using the timer interrupt handler to drive context switches.
Third, many CPUs may be switching among processes concurrently, and a locking plan
is necessary to avoid races. Fourth, when a process has exited its memory and other
resources must be freed, but it cannot do all of this itself because (for example) it can’t
free its own kernel stack while still using it. Xv6 tries to solve these problems as sim-
ply as possible, but nevertheless the resulting code is tricky.

xv6 must provide ways for processes to coordinate among themselves. For exam-
ple, a parent process may need to wait for one of its children to exit, or a process
reading on a pipe may need to wait for some other process to write the pipe. Rather
than make the waiting process waste CPU by repeatedly checking whether the desired
event has happened, xv6 allows a process to give up the CPU and sleep waiting for an
event, and allows another process to wake the first process up. Care is needed to avoid
races that result in the loss of event notifications. As an example of these problems
and their solution, this chapter examines the implementation of pipes.

Code: Context switching

At a low level, xv6 performs two kinds of context switches: from a process’s ker-
nel thread to the current CPU’s scheduler thread, and from the scheduler thread to a
process’s kernel thread. xv6 never directly switches from one user-space process to an-
other; this happens by way of a user-kernel transition (system call or interrupt), a con-
text switch to the scheduler, a context switch to a new process’s kernel thread, and a

1

trap return. In this section we’ll example the mechanics of switching between a kernel
thread and a scheduler thread.

Every xv6 process has its own kernel stack and register set, as we saw in Chapter
2. Each CPU has a separate scheduler thread for use when it is executing the sched-
uler rather than any process’s kernel thread. Switching from one thread to another in-
volves saving the old thread’s CPU registers, and restoring previously-saved registers of
the new thread; the fact that esp and eip are saved and restored means that the CPU
will switch stacks and switch what code it is executing.

swtch doesn’t directly know about threads; it just saves and restores register sets,
called contexts. When it is time for the process to give up the CPU, the process’s ker-
nel thread will call swtch to save its own context and return to the scheduler context.
Each context is represented by a struct context*, a pointer to a structure stored on
the kernel stack involved. Swtch takes two arguments: struct context **old and
struct context *new. It pushes the current CPU register onto the stack and saves the
stack pointer in *old. Then swtch copies new to esp, pops previously saved registers,
and returns.

Instead of following the scheduler into swtch, let’s instead follow our user process
back in. We saw in Chapter 3 that one possibility at the end of each interrupt is that
trap calls yield. Yield in turn calls sched, which calls swtch to save the current
context in proc->context and switch to the scheduler context previously saved in
cpu->scheduler (2166).

Swtch (2352) starts by loading its arguments off the stack into the registers %eax

and %edx (2359-2360); swtch must do this before it changes the stack pointer and can no
longer access the arguments via %esp. Then swtch pushes the register state, creating a
context structure on the current stack. Only the callee-save registers need to be saved;
the convention on the x86 is that these are %ebp, %ebx, %esi, %ebp, and %esp. Swtch
pushes the first four explicitly (2363-2366); it saves the last implicitly as the struct con-

text* written to *old (2369). There is one more important register: the program
counter %eip was saved by the call instruction that invoked swtch and is on the
stack just above %ebp. Having saved the old context, swtch is ready to restore the new
one. It moves the pointer to the new context into the stack pointer (2370). The new
stack has the same form as the old one that swtch just left—the new stack was the old
one in a previous call to swtch—so swtch can invert the sequence to restore the new
context. It pops the values for %edi, %esi, %ebx, and %ebp and then returns (2373-2377).
Because swtch has changed the stack pointer, the values restored and the instruction
address returned to are the ones from the new context.

In our example, sched called swtch to switch to cpu->scheduler, the per-CPU
scheduler context. That context had been saved by scheduler’s call to swtch (2128).
When the swtch we have been tracing returns, it returns not to sched but to sched-

uler, and its stack pointer points at the current CPU’s scheduler stack, not initproc’s
kernel stack.

Code: Scheduling

The last section looked at the low-level details of swtch; now let’s take swtch as a

2

given and examine the conventions involved in switching from process to scheduler
and back to process. A process that wants to give up the CPU must acquire the pro-
cess table lock ptable.lock, release any other locks it is holding, update its own state
(proc->state), and then call sched. Yield (2172) follows this convention, as do sleep

and exit, which we will examine later. Sched double-checks those conditions (2157-

2162) and then an implication of those conditions: since a lock is held, the CPU should
be running with interrupts disabled. Finally, sched calls swtch to save the current
context in proc->context and switch to the scheduler context in cpu->scheduler.
Swtch returns on the scheduler’s stack as though scheduler’s swtch had returned
(2128). The scheduler continues the for loop, finds a process to run, switches to it, and
the cycle repeats.

We just saw that xv6 holds ptable.lock across calls to swtch: the caller of
swtch must already hold the lock, and control of the lock passes to the switched-to
code. This convention is unusual with locks; the typical convention is the thread that
acquires a lock is also responsible of releasing the lock, which makes it easier to reason
about correctness. For context switching is necessary to break the typical convention
because ptable.lock protects invariants on the process’s state and context fields
that are not true while executing in swtch. One example of a problem that could arise
if ptable.lock were not held during swtch: a different CPU might decide to run the
process after yield had set its state to RUNNABLE, but before swtch caused it to stop
using its own kernel stack. The result would be two CPUs running on the same stack,
which cannot be right.

A kernel thread always gives up its processor in sched and always switches to the
same location in the scheduler, which (almost) always switches to a process in sched.
Thus, if one were to print out the line numbers where xv6 switches threads, one would
observe the following simple pattern: (2128), (2166), (2128), (2166), and so on. The proce-
dures in which this stylized switching between two threads happens are sometimes re-
ferred to as co-routines; in this example, sched and scheduler are co-routines of each
other.

There is one case when the scheduler’s swtch to a new process does not end up
in sched. We saw this case in Chapter 2: when a new process is first scheduled, it be-
gins at forkret (2183). Forkret exists only to honor this convention by releasing the
ptable.lock; otherwise, the new process could start at trapret.

Scheduler (2108) runs a simple loop: find a process to run, run it until it stops,
repeat. scheduler holds ptable.lock for most of its actions, but releases the lock
(and explicitly enables interrupts) once in each iteration of its outer loop. This is im-
portant for the special case in which this CPU is idle (can find no RUNNABLE process).
If an idling scheduler looped with the lock continuously held, no other CPU that was
running a process could ever perform a context switch or any process-related system
call, and in particular could never mark a process as RUNNABLE so as to break the
idling CPU out of its scheduling loop. The reason to enable interrupts periodically on
an idling CPU is that there might be no RUNNABLE process because processes (e.g., the
shell) are waiting for I/O; if the scheduler left interrupts disabled all the time, the I/O
would never arrive.

The scheduler loops over the process table looking for a runnable process, one

3

that has p->state == RUNNABLE. Once it finds a process, it sets the per-CPU current
process variable proc, switches to the process’s page table with switchuvm, marks the
process as RUNNING, and then calls swtch to start running it (2122-2128).

One way to think about the structure of the scheduling code is that it arranges to
enforce a set of invariants about each process, and holds ptable.lock whenever those
invariants are not true. One invariant is that if a process is RUNNING, things must be
set up so that a timer interrupt’s yield can correctly switch away from the process;
this means that the CPU registers must hold the process’s register values (i.e. they
aren’t actually in a context), cr3 must refer to the process’s pagetable, esp must refer
to the process’s kernel stack so that swtch can push registers correctly, and proc must
refer to the process’s proc[] slot. Another invariant is that if a process is RUNNABLE,
things must be set up so that an idle CPU’s scheduler can run it; this means that p-
>context must hold the process’s kernel thread variables, that no CPU is executing on
the process’s kernel stack, that no CPU’s cr3 refers to the process’s page table, and that
no CPU’s proc refers to the process.

Maintaining the above invariants is the reason why xv6 acquires ptable.lock in
one thread (often in yield) and releases the lock in a different thread (the scheduler
thread or another next kernel thread). Once the code has started to modify a running
process’s state to make it RUNNABLE, it must hold the lock until it has finished restoring
the invariants: the earliest correct release point is after scheduler stops using the pro-
cess’s page table and clears proc. Similarly, once scheduler starts to convert a
runnable process to RUNNING, the lock cannot be released until the kernel thread is
completely running (after the swtch, e.g. in yield).

ptable.lock protects other things as well: allocation of process IDs and free
process table slots, the interplay between exit and wait, the machinery to avoid lost
wakeups (see next section), and probably other things too. It might be worth thinking
about whether the different functions of ptable.lock could be split up, certainly for
clarity and perhaps for performance.

Sleep and wakeup

Locks help CPUs and processes avoid interfering with each other, and scheduling
helps processes share a CPU, but so far we have no abstractions that make it easy for
processes to communicate. Sleep and wakeup fill that void, allowing one process to
sleep waiting for an event and another process to wake it up once the event has hap-
pened. Sleep and wakeup are often called sequence coordination mechanisms, and
there are many other such mechanisms in the operating systems literature.

To illustrate what we mean, let’s consider a simple producer/consumer queue.
The queue allows one process to send a nonzero pointer to another process. Assuming
there is only one sender and one receiver and they execute on different CPUs, this im-
plementation is correct:

4

100 struct q {

101 void *ptr;

102 };

103

104 void*

105 send(struct q *q, void *p)

106 {

107 while(q->ptr != 0)

108 ;

109 q->ptr = p;

110 }

111

112 void*

113 recv(struct q *q)

114 {

115 void *p;

116

117 while((p = q->ptr) == 0)

118 ;

119 q->ptr = 0;

120 return p;

121 }

Send loops until the queue is empty (ptr == 0) and then puts the pointer p in the
queue. Recv loops until the queue is non-empty and takes the pointer out. When run
in different processes, send and recv both edit q->ptr, but send only writes to the
pointer when it is zero and recv only writes to the pointer when it is nonzero, so they
do not step on each other.

The implementation above may be correct, but it is very expensive. If the sender
sends rarely, the receiver will spend most of its time spinning in the while loop hop-
ing for a pointer. The receiver’s CPU could find more productive work if there were a
way for the receiver to be notified when the send had delivered a pointer.

Let’s imagine a pair of calls, sleep and wakeup, that work as follows.
Sleep(chan) sleeps on the arbitrary value chan, called the wait channel. Sleep puts
the calling process to sleep, releasing the CPU for other work. Wakeup(chan) wakes
all processes sleeping on chan (if any), causing their sleep calls to return. If no pro-
cesses are waiting on chan, wakeup does nothing. We can change the queue imple-
mentation to use sleep and wakeup:

201 void*

202 send(struct q *q, void *p)

203 {

204 while(q->ptr != 0)

205 ;

206 q->ptr = p;

207 wakeup(q); /* wake recv */

208 }

209

210 void*

211 recv(struct q *q)

212 {

213 void *p;

5

214

215 while((p = q->ptr) == 0)

216 sleep(q);

217 q->ptr = 0;

218 return p;

219 }

recv now gives up the CPU instead of spinning, which is nice. However, it turns
out not to be straightforward to design sleep and wakeup with this interface without
suffering from what is known as the "lost wake up" problem. Suppose that recv finds
that q->ptr == 0 on line 215 and decides to call sleep. Before recv can sleep, send
runs on another CPU: it changes q->ptr to be nonzero and calls wakeup, which finds
no processes sleeping and thus does nothing. Now recv continues executing at line
216: it calls sleep and goes to sleep. This causes a problem: recv is asleep waiting
for a pointer that has already arrived. The next send will sleep waiting for recv to
consume the pointer in the queue, at which point the system will be deadlocked.

The root of this problem is that the invariant that recv only sleeps when q->ptr

== 0 is violated by send running at just the wrong moment. To protect this invariant,
we introduce a lock, which sleep releases only after the calling process is asleep; this
avoids the missed wakeup in the example above. Once the calling process is awake
again sleep reacquires the lock before returning. We would like to be able to have
the following code:

300 struct q {

301 struct spinlock lock;

302 void *ptr;

303 };

304

305 void*

306 send(struct q *q, void *p)

307 {

308 acquire(&q->lock);

309 while(q->ptr != 0)

310 ;

311 q->ptr = p;

312 wakeup(q);

313 release(&q->lock);

314 }

315

316 void*

317 recv(struct q *q)

318 {

319 void *p;

320

321 acquire(&q->lock);

322 while((p = q->ptr) == 0)

323 sleep(q, &q->lock);

324 q->ptr = 0;

325 release(&q->lock);

326 return p;

327 }

The fact that recv holds q->lock prevents send from trying to wake it up be-

6

tween recv’s check of q->ptr and its call to sleep. Of course, the receiving process
had better not hold q->lock while it is sleeping, since that would prevent the sender
from waking it up, and lead to deadlock. So what we want is for sleep to atomically
release q->lock and put the receiving process to sleep.

A complete sender/receiver implementation would also sleep in send when wait-
ing for a receiver to consume the value from a previous send.

Code: Sleep and wakeup

Let’s look at the implementation of sleep and wakeup in xv6. The basic idea is
to have sleep mark the current process as SLEEPING and then call sched to release
the processor; wakeup looks for a process sleeping on the given pointer and marks it
as RUNNABLE.

Sleep (2203) begins with a few sanity checks: there must be a current process
(2205) and sleep must have been passed a lock (2208-2209). Then sleep acquires pt-

able.lock (2218). Now the process going to sleep holds both ptable.lock and lk.
Holding lk was necessary in the caller (in the example, recv): it ensured that no other
process (in the example, one running send) could start a call wakeup(chan). Now that
sleep holds ptable.lock, it is safe to release lk: some other process may start a call
to wakeup(chan), but wakeup will not run until it can acquire ptable.lock, so it
must wait until sleep has finished putting the process to sleep, keeping the wakeup

from missing the sleep.
There is a minor complication: if lk is equal to &ptable.lock, then sleep would

deadlock trying to acquire it as &ptable.lock and then release it as lk. In this case,
sleep considers the acquire and release to cancel each other out and skips them en-
tirely (2217).

Now that sleep holds ptable.lock and no others, it can put the process to sleep
by recording the sleep channel, changing the process state, and calling sched (2223-2225).

At some point later, a process will call wakeup(chan). Wakeup (2253) acquires pt-

able.lock and calls wakeup1, which does the real work. It is important that wakeup

hold the ptable.lock both because it is manipulating process states and because, as
we just saw, ptable.lock makes sure that sleep and wakeup do not miss each other.
Wakeup1 is a separate function because sometimes the scheduler needs to execute a
wakeup when it already holds the ptable.lock; we will see an example of this later.
Wakeup1 (2253) loops over the process table. When it finds a process in state SLEEPING

with a matching chan, it changes that process’s state to RUNNABLE. The next time the
scheduler runs, it will see that the process is ready to be run.

wakeup must always be called while holding a lock that prevents observation of
whatever the wakeup condition is; in the example above that lock is q->lock. The
complete argument for why the sleeping process won’t miss a wakeup is that at all
times from before it checks the condition until after it is asleep, it holds either the lock
on the condition or the ptable.lock or both. Since wakeup executes while holding
both of those locks, the wakeup must execute either before the potential sleeper checks
the condition, or after the potential sleeper has completed putting itself to sleep.

It is sometimes the case that multiple processes are sleeping on the same channel;

7

for example, more than one process trying to read from a pipe. A single call to wake-

up will wake them all up. One of them will run first and acquire the lock that sleep
was called with, and (in the case of pipes) read whatever data is waiting in the pipe.
The other processes will find that, despite being woken up, there is no data to be read.
From their point of view the wakeup was "spurious," and they must sleep again. For
this reason sleep is always called inside a loop that checks the condition.

Callers of sleep and wakeup can use any mutually convenient number as the
channel; in practice xv6 often uses the address of a kernel data structure involved in
the waiting, such as a disk buffer. No harm is done if two uses of sleep/wakeup acci-
dentally choose the same channel: they will see spurious wakeups, but looping as de-
scribed above will tolerate this problem. Much of the charm of sleep/wakeup is that it
is both lightweight (no need to create special data structures to act as sleep channels)
and provides a layer of indirection (callers need not know what specific process they
are interacting with).

Code: Pipes

The simple queue we used earlier in this Chapter was a toy, but xv6 contains a real
queue that uses sleep and wakeup to synchronize readers and writers. That queue is
the implementation of pipes. We saw the interface for pipes in Chapter 0: bytes writ-
ten to one end of a pipe are copied in an in-kernel buffer and then can be read out of
the other end of the pipe. Future chapters will examine the file system support sur-
rounding pipes, but let’s look now at the implementations of pipewrite and
piperead.

Each pipe is represented by a struct pipe, which contains a lock and a data

buffer. The fields nread and nwrite count the number of bytes read from and written
to the buffer. The buffer wraps around: the next byte written after buf[PIPESIZE-1]

is buf[0], but the counts do not wrap. This convention lets the implementation dis-
tinguish a full buffer (nwrite == nread+PIPESIZE) from an empty buffer nwrite ==

nread), but it means that indexing into the buffer must use buf[nread % PIPESIZE]

instead of just buf[nread] (and similarly for nwrite). Let’s suppose that calls to
piperead and pipewrite happen simultaneously on two different CPUs.

Pipewrite (5680) begins by acquiring the pipe’s lock, which protects the counts,
the data, and their associated invariants. Piperead (5701) then tries to acquire the lock
too, but cannot. It spins in acquire (1573) waiting for the lock. While piperead waits,
pipewrite loops over the bytes being written—addr[0], addr[1], ..., addr[n-1]—
adding each to the pipe in turn (5694). During this loop, it could happen that the
buffer fills (5686). In this case, pipewrite calls wakeup to alert any sleeping readers to
the fact that there is data waiting in the buffer and then sleeps on &p->nwrite to wait
for a reader to take some bytes out of the buffer. Sleep releases p->lock as part of
putting pipewrite’s process to sleep.

Now that p->lock is available, piperead manages to acquire it and start running
in earnest: it finds that p->nread != p->nwrite (5706) (pipewrite went to sleep be-
cause p->nwrite == p->nread+PIPESIZE (5686)) so it falls through to the for loop,
copies data out of the pipe (5713-5717), and increments nread by the number of bytes

8

copied. That many bytes are now available for writing, so piperead calls wakeup (5718)

to wake any sleeping writers before it returns to its caller. Wakeup finds a process
sleeping on &p->nwrite, the process that was running pipewrite but stopped when
the buffer filled. It marks that process as RUNNABLE.

The pipe code uses separate sleep channels for reader and writer (p->nread and
p->nwrite); this might make the system more efficient in the unlikely event that there
are lots of readers and writers waiting for the same pipe. The pipe code sleeps inside
a loop checking the sleep condition; if there are multiple readers or writers, all but the
first process to wake up will see the condition is still false and sleep again.

Code: Wait and exit

Sleep and wakeup can be used in many kinds of situations involving a condition that
can be checked needs to be waited for. As we saw in Chapter 0, a parent process can
call wait to wait for a child to exit. In xv6, when a child exits, it does not die imme-
diately. Instead, it switches to the ZOMBIE process state until the parent calls wait to
learn of the exit. The parent is then responsible for freeing the memory associated
with the process and preparing the struct proc for reuse. Each process structure
keeps a pointer to its parent in p->parent. If the parent exits before the child, the ini-
tial process init adopts the child and waits for it. This step is necessary to make sure
that some process cleans up after the child when it exits. All the process structures are
protected by ptable.lock.

Wait begins by acquiring ptable.lock. Then it scans the process table looking
for children. If wait finds that the current process has children but that none of them
have exited, it calls sleep to wait for one of the children to exit (2089) and loops.
Here, the lock being released in sleep is ptable.lock, the special case we saw above.

Exit acquires ptable.lock and then wakes the current process’s parent (2026).
This may look premature, since exit has not marked the current process as a ZOMBIE

yet, but it is safe: although the parent is now marked as RUNNABLE, the loop in wait

cannot run until exit releases ptable.lock by calling sched to enter the scheduler,
so wait can’t look at the exiting process until after the state has been set to ZOMBIE

(2038). Before exit reschedules, it reparents all of the exiting process’s children, passing
them to the initproc (2028-2035). Finally, exit calls sched to relinquish the CPU.

Now the scheduler can choose to run the exiting process’s parent, which is asleep
in wait (2089). The call to sleep returns holding ptable.lock; wait rescans the pro-
cess table and finds the exited child with state == ZOMBIE. (2032). It records the child’s
pid and then cleans up the struct proc, freeing the memory associated with the pro-
cess (2068-2076).

The child process could have done most of the cleanup during exit, but it is im-
portant that the parent process be the one to free p->kstack and p->pgdir: when the
child runs exit, its stack sits in the memory allocated as p->kstack and it uses its
own pagetable. They can only be freed after the child process has finished running for
the last time by calling swtch (via sched). This is one reason that the scheduler proce-
dure runs on its own stack rather than on the stack of the thread that called sched.

9

Scheduling concerns

XXX checking p->killed

XXX thundering herd

Real world

Sleep and wakeup are a simple and effective synchronization method, but there
are many others. The first challenge in all of them is to avoid the ‘‘missed wakeups’’
problem we saw at the beginning of the chapter. The original Unix kernel’s sleep

simply disabled interrupts, which sufficed because Unix ran on a single-CPU system.
Because xv6 runs on multiprocessors, it adds an explicit lock to sleep. FreeBSD’s
msleep takes the same approach. Plan 9’s sleep uses a callback function that runs
with the scheduling lock held just before going to sleep; the function serves as a last
minute check of the sleep condition, to avoid missed wakeups. The Linux kernel’s
sleep uses an explicit process queue instead of a wait channel; the queue has its own
internal lock. (XXX Looking at the code that seems not to be enough; what’s going
on?)

Scanning the entire process list in wakeup for processes with a matching chan is
inefficient. A better solution is to replace the chan in both sleep and wakeup with a
data structure that holds a list of processes sleeping on that structure. Plan 9’s sleep

and wakeup call that structure a rendezvous point or Rendez. Many thread libraries re-
fer to the same structure as a condition variable; in that context, the operations sleep

and wakeup are called wait and signal. All of these mechanisms share the same fla-
vor: the sleep condition is protected by some kind of lock dropped atomically during
sleep.

Semaphores are another common coordination mechanism. A semaphore is an
integer value with two operations, increment and decrement (or up and down). It is
aways possible to increment a semaphore, but the semaphore value is not allowed to
drop below zero: a decrement of a zero semaphore sleeps until another process incre-
ments the semaphore, and then those two operations cancel out. The integer value
typically corresponds to a real count, such as the number of bytes available in a pipe
buffer or the number of zombie children that a process has. Using an explicit count as
part of the abstraction avoids the ‘‘missed wakeup’’ problem: there is an explicit count
of the number of wakeups that have occurred. The count also avoids the spurious
wakeup and thundering herd problems inherent in condition variables.

Exercises:

Sleep has to check lk != &ptable.lock to avoid a deadlock (2217-2220). It could eliminate
the special case by replacing

10

if(lk != &ptable.lock){

acquire(&ptable.lock);

release(lk);

}

with

release(lk);

acquire(&ptable.lock);

Doing this would break sleep. How?

Most process cleanup could be done by either exit or wait, but we saw above that
exit must not free p->stack. It turns out that exit must be the one to close the
open files. Why? The answer involves pipes.

Implement semaphores in xv6. You can use mutexes but do not use sleep and wakeup.
Replace the uses of sleep and wakeup in xv6 with semaphores. Judge the result.

Additional reading:

cox and mullender, semaphores.

pike et al, sleep and wakeup

11

