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Chapter 7

File system data structures

The disk driver and buffer cache (Chapter 6) provide safe, synchronized access to
disk blocks. Individual blocks are still a very low-level interface, too raw for most pro-
grams. Xv6, following Unix, provides a hierarchical file system that allows programs to
treat storage as a tree of named files, each containing a variable length sequence of
bytes. The file system is implemented in four layers:

The first layer is the block allocator. It manages disk blocks, keeping track of which
blocks are in use, just as the memory allocator in Chapter 2 tracks which memory
pages are in use. The second layer is unnamed files called inodes (pronounced i-
node). Inodes are a collection of allocated blocks holding a variable length sequence
of bytes. The third layer is directories. A directory is a special kind of inode whose
content is a sequence of directory entries, each of which lists a name and a pointer to
another inode. The last layer is hierarchical path names like /usr/rtm/xv6/fs.c, a
convenient syntax for identifying particular files or directories.

File system layout

Xv6 lays out its file system as follows. Block 0 is unused, left available for use by
the operating system boot sequence. Block 1 is called the superblock; it contains
metadata about the file system. After block 1 comes a sequence of inodes blocks, each
containing inode headers. After those come bitmap blocks tracking which data blocks
are in use, and then the data blocks themselves.

The header fs.h (3700) contains constants and data structures describing the lay-
out of the file system. The superblock contains three numbers: the file system size in
blocks, the number of data blocks, and the number of inodes.

Code: Block allocator



The block allocator is made up of the two functions: balloc allocates a new disk
block and bfree frees one. Balloc (4204) starts by calling readsb to read the su-
perblock. (Readsb (4178) is almost trivial: it reads the block, copies the contents into
sb, and releases the block.) Now that balloc knows the number of inodes in the file
system, it can consult the in-use bitmaps to find a free data block. The loop (4212)
considers every block, starting at block 0 up to sb.size, the number of blocks in the
file system, checking for a block whose bitmap bit is zero, indicating it is free. If bal-
Toc finds such a block, it updates the bitmap and returns the block For efficiency, the
loop is split into two pieces: the inner loop checks all the bits in a single bitmap
block—there are BPB—and the outer loop considers all the blocks in increments of
BPB. There may be multiple processes calling balloc simultaneously, and yet there is
no explicit locking. Instead, balloc relies on the fact that the buffer cache (bread and
brelse) only let one process use a buffer at a time. When reading and writing a
bitmap block (4214-4222), balloc can be sure that it is the only process in the system
using that block.

Bfree (4230) is the opposite of balloc and has an easier job: there is no search. It
finds the right bitmap block, clears the right bit, and is done. Again the exclusive use
implied by bread and brelse avoids the need for explicit locking.

When blocks are loaded in memory, they are referred to by pointers to buf struc-
tures; as we saw in the last chapter, a more permanent reference is the block’s address
on disk, its block number.

Inodes

In Unix technical jargon, the term inode refers to an unnamed file in the file sys-
tem, but the precise meaning can be one of three, depending on context. First, there is
the on-disk data structure, which contains metadata about the inode, like its size and
the list of blocks storing its data. Second, there is the in-kernel data structure, which
contains a copy of the on-disk structure but adds extra metadata needed within the
kernel. Third, there is the concept of an inode as the whole unnamed file, including
not just the header but also its content, the sequence of bytes in the data blocks. Us-
ing the one word to mean all three related ideas can be confusing at first but should
become natural.

Inode metadata is stored in an inode structure, and all the inode structures for
the file system are packed into a separate section of disk called the inode blocks. Ev-
ery inode structure is the same size, so it is easy, given a number n, to find the nth in-
ode structure on the disk. In fact, this number n, called the inode number or i-num-
ber, is how inodes are identified in the implementation.

The on-disk inode structure is a struct dinode (3722). The type field in the in-
ode header doubles as an allocation bit: a type of zero means the inode is available
for use. The kernel keeps the set of active inodes in memory; its struct inode is the
in-memory copy of a struct dinode on disk. The access rules for in-memory inodes
are similar to the rules for buffers in the buffer cache: there is an inode cache, iget
fetches an inode from the cache, and iput releases an inode. Unlike in the buffer
cache, iget returns an unlocked inode: it is the caller’s responsibility to lock the in-



ode with ilock before reading or writing metadata or content and then to unlock the
inode with iunlock before calling iput. Leaving locking to the caller allows the file
system calls (described in Chapter 8) to manage the atomicity of complex operations.
Multiple processes can hold a reference to an inode ip returned by iget (ip->ref
counts exactly how many), but only one process can lock the inode at a time.

The inode cache is not a true cache: its only purpose is to synchronize access by
multiple processes to shared inodes. It does not actually cache inodes when they are
not being used; instead it assumes that the buffer cache is doing a good job of avoid-
ing unnecessary disk acceses and makes no effort to avoid calls to bread. The in-
memory copy of the inode augments the disk fields with the device and inode number,
the reference count mentioned earlier, and a set of flags.

Code: Inodes

To allocate a new inode (for example, when creating a file), xv6 calls ialloc
(4302). Ialloc is similar to balloc: it loops over the inode structures on the disk, one
block at a time, looking for one that is marked free. When it finds one, it claims it by
writing the new type to the disk and then returns an entry from the inode cache with
the tail call to iget (4318). Like in balloc, the correct operation of ialloc depends
on the fact that only one process at a time can be holding a reference to bp: ialloc
can be sure that some other process does not simultaneously see that the inode is
available and try to claim it.

Iget (4353) looks through the inode cache for an active entry (ip->ref > 0) with
the desired device and inode number. If it finds one, it returns a new reference to that
inode. (4362-4366). As iget scans, it records the position of the first empty slot (4367-
4368), which it uses if it needs to allocate a new cache entry. In both cases, iget re-
turns one reference to the caller: it is the caller’s responsibility to call iput to release
the inode. It can be convenient for some callers to arrange to call iput multiple times.
Idup (4388) increments the reference count so that an additional iput call is required
before the inode can be dropped from the cache.

Callers must lock the inode using ilock before reading or writing its metadata or
content. ITock (4402) uses a now-familiar sleep loop to wait for ip->flag’s I_BUSY bit
to be clear and then sets it (4411-4413). Once ilock has exclusive access to the inode, it
can load the inode metadata from the disk (more likely, the buffer cache) if needed.
TunTock (4434) clears the I_BUSY bit and wakes any processes sleeping in iTock.

Iput (4452) releases a reference to an inode by decrementing the reference count
(4468). If this is the last reference, so that the count would become zero, the inode is
about to become unreachable: its disk data needs to be reclaimed. Iput relocks the
inode; calls itrunc to truncate the file to zero bytes, freeing the data blocks; sets the
type to 0 (unallocated); writes the change to disk; and finally unlocks the inode (4455-
4467).

The locking protocol in iput deserves a closer look. The first part with examin-
ing is that when locking ip, iput simply assumed that it would be unlocked, instead
of using a sleep loop. This must be the case, because the caller is required to unlock
ip before calling iput, and the caller has the only reference to it (ip->ref == 1). The



second part worth examining is that iput temporarily releases (4460) and reacquires
(4464) the cache lock. This is necessary because itrunc and iupdate will sleep during
disk i/o, but we must consider what might happen while the lock is not held. Specifi-
cally, once iupdate finishes, the on-disk structure is marked as available for use, and a
concurrent call to ialloc might find it and reallocate it before iput can finish. Ial-
Toc will return a reference to the block by calling iget, which will find ip in the
cache, see that its I_BUSY flag is set, and sleep. Now the in-core inode is out of sync
compared to the disk: ialloc reinitialized the disk version but relies on the caller to
load it into memory during ilock. In order to make sure that this happens, iput
must clear not only I_BUSY but also I_VALID before releasing the inode lock. It does
this by zeroing flags (4465).

Code: Inode contents

The on-disk inode structure, struct dinode, contains a a size and a list of block
numbers. The inode data is found in the blocks listed in the dinode’s addrs array.
The first NDIRECT blocks of data are listed in the first NDIRECT entries in the array;
these blocks are called “direct blocks” The next NINDIRECT blocks of data are listed
not in the inode but in a data block called the “indirect block” The last entry in the
addrs array gives the address of the indirect block. Thus the first 6 kB (NDI-
RECTXBSIZE) bytes of a file can be loaded from blocks listed in the inode, while the
next 64kB (NINDIRECTXBSIZE) bytes can only be loaded after consulting the indirect
block. This is a good on-disk representation but a complex one for clients. Bmap
manages the representation so that higher-level routines such as readi and writei,
which we will see shortly. Bmap returns the disk block number of the bn’th data block
for the inode ip. If ip does not have such a block yet, bmap allocates one.

Bmap (4510) begins by picking off the easy case: the first NDIRECT blocks are listed
in the inode itself (4515-4519). The next NINDIRECT blocks are litsed in the indirect
block at ip->addrs[NDIRECT]. Bmap reads the indirect block (4526) and then reads a
block number from the right position within the block (4527). If the block number ex-
ceeds NDIRECT+NINDIRECT, bmap panics: callers are responsible for not asking about
out-of-range block numbers.

Bmap allocates block as needed. Unallocated blocks are denoted by a block num-
ber of zero. As bmap encouters zeros, it replaces them with the numbers of fresh
blocks, allocated on demand. (4516-4517, 4524-4525).

Bmap allocates blocks on demand as the inode grows; itrunc frees them, resetting
the inode’s size to zero. Itrunc (4554) starts by freeing the direct blocks (4560-4565) and
then the ones listed in the indirect block (4570-4573), and finally the indirect block itself
(4575-4576).

Bmap makes it easy to write functions to access the inode’s data stream, like read1i
and writei. Readi (4602) reads data from the inode. It starts making sure that the oft-
set and count are not reading beyond the end of the file. Reads that start beyond the
end of the file return an error (4613-4614) while reads that start at or cross the end of
the file return fewer bytes than requested (4615-4616). The main loop processes each
block of the file, copying data from the buffer into dst (4618-4623). Writei (4652) is



identical to readi, with three exceptions: writes that start at or cross the end of the
file grow the file, up to the maximum file size (4665-4666); the loop copies data into the
buffers instead of out (4671); and if the write has extended the file, writei must update
its size (4676-4679).

Both readi and writei begin by checking for ip->type == T_DEV. This case
handles special devices whose data does not live in the file system; we will return to
this case in Chapter 8.

Stati (4174) copies inode metadata into the stat structure, which is exposed to
user programs via the stat system call (see Chapter 8).

Code: Directories

Xv6 implements a directory as a special kind of file: it has type T_DEV and its
data is a sequence of directory entries. Each entry is a struct dirent (3746), which
contains a name and an inode number. The name is at most DIRSIZ (14) letters; if
shorter, it is terminated by a NUL (0) byte. Directory entries with inode number zero
are unallocated.

Dirlookup (4712) searches the directory for an entry with the given name. If it
finds one, it returns the corresponding inode, unlocked, and sets *poff to the byte oft-
set of the entry within the directory, in case the caller wishes to edit it. The outer for
loop (4721) considers each block in the directory in turn; the inner loop (4723) considers
each directory entry in the block, ignoring entries with inode number zero. If dir-
Tookup finds an entry with the right name, it updates *poff, releases the block, and
returns an unlocked inode obtained via iget (4728-4735). Dirlookup is the reason that
iget returns unlocked inodes. The caller has locked dp, so if the lookup was for ., an
alias for the current directory, attempting to lock the inode before returning would try
to re-lock dp and deadlock. (There are more complicated deadlock scenarios involving
multiple processes and . ., an alias for the parent directory; . is not the only problem.)
The caller can unlock dp and then lock ip, ensuring that it only holds one lock at a
time.

If dirlookup is read, dirlink is write. Dirlink (4752) writes a new directory en-
try with the given name and inode number into the directory dp. If the name already
exists, dirlink returns an error (4758-4762). The main loop reads directory entries look-
ing for an unallocated entry. When it finds one, it stops the loop early (4768-4769), with
of f set to the offset of the available entry. Otherwise, the loop ends with off set to
dp->size. Either way, dirlink then adds a new entry to the directory by writing at
offset of f (4772-4775).

Dirlookup and dirlink use different loops to scan the directory: dirlookup
operates a block at a time, like balloc and ialloc, while dirlink operates one entry
at a time by calling readi. The latter approach calls bread more often—once per en-
try instead of once per block—but is simpler and makes it easy to exit the loop with
off set correctly. The more complex loop in dirlookup does not save any disk i/o—
the buffer cache avoids redundant reads—but does avoid repeated locking and unlock-
ing of bcache.lock in bread. The extra work may have been deemed necessary in
dirlooup but not dirlink because the former is so much more common than the



latter. (TODO: Make this paragraph into an exercise?)

Path names

The code examined so far implements a hierarchical file system. The earliest
Unix systems, such as the version described in Thompson and Ritchie’s earliest paper,
stops here. Those systems looked up names in the current directory only; to look in
another directory, a process needed to first move into that directory. Before long, it
became clear that it would be useufl to refer to directories further away: the name
xv6/fs.c means first look up xv6, which must be a directory, and then look up fs.c
in that directory. A path beginning with a slash is called rooted. The name
/xv6/fs.c is like xv6/fs.c but starts the lookup at the root of the file system tree in-
stead of the current directory. Now, decades later, hierarchical, optionally rooted path
names are so commonplace that it is easy to forgoet that they had to be invented;
Unix did that. (TODO: Is this really true?)

Code: Path names

The final section of fs.c interprets hierarchical path names. Skipelem (4815)
helps parse them. It copies the first element of path to name and retrns a pointer to
the remainder of path, skipping over leading slashes. Appendix A examines the imple-
mentation in detail.

Namei (4889) evaluates path as a hierarchical path name and returns the corre-
sponding inode. Nameiparent is a variant: it stops before the last element, returning
the inode of the parent directory and copying the final element into name. Both call
the generalized function namex to do the real work.

Namex (4854) starts by deciding where the path evaluation begins. If the path be-
gins with a slash, evaluation begins at the root; otherwise, the current directory (485s-
4861). Then it uses skipelem to consider each element of the path in turn (4863). Each
iteration of the loop must look up name in the current inode ip. The iteration begins
by locking ip and checking that it is a directory. If not, the lookup fails (4864-4868).
(Locking ip is necessary not because ip->type can change underfoot—it can’t—but
because until iTock runs, ip->type is not guaranteed to have been loaded from disk.)
If the call is nameiparent and this is the last path element, the loop stops early, as per
the definition of nameiparent; the final path element has already been copied into
name, so namex need only return the unlocked ip (4869-4873). Finally, the loop looks for
the path element using dirlookup and prepares for the next iteration by setting
ip.=.next (4874-4879). When the loop runs out of path elements, it returns ip.

TODO: It is possible that namei belongs with all its uses, like open and close, and
not here in data structure land.

Real world



Xv6’s file system implementation assumes that disk operations are far more expen-
sive than computation. It uses an efficient tree structure on disk but comparatively in-
efficient linear scans in the inode and buffer cache. The caches are small enough and
disk accesses expensive enough to justify this tradeoff. Modern operating systems with
larger caches and faster disks use more efficient in-memory data structures. The disk
structure, however, with its inodes and direct blocks and indirect blocks, has been re-
markably persistent. BSD’s UFS/FFS and Linux’s ext2/ext3 use essentially the same
data structures. The most inefficient part of the file system layout is the directory,
which requires a linear scan over all the disk blocks during each lookup. This is rea-
sonable when directories are only a few disk blocks, especially if the entries in each
disk block can be kept sorted, but when directories span many disk blocks. Microsoft
Windows’s NTFS, Mac OS X’s HFS, and Solaris’s ZFS, just to name a few, implement a
directory as an on-disk balanced tree of blocks. This is more complicated than reusing
the file implementation but guarantees logarithmic-time directory lookups.

Xvé6 is intentionally naive about disk failures: if a disk operation fails, xv6 panics.
Whether this is reasonable depends on the hardware: if an operating systems sits atop
special hardware that uses redundancy to mask disk failures, perhaps the operating
system sees failures so infrequently that panicking is okay. On the other hand, operat-
ing systems using plain disks should expect failures and handle them more gracefully,
so that the loss of a block in one file doesn't affect the use of the rest of the files sys-
tem.

Xv6, like most operating systems, requires that the file system fit on one disk de-
vice and not change in size. As large databases and multimedia files drive storage re-
quirements ever higher, operating systems are developing ways to eliminate the “one
disk per file system” bttleneck. The basic approach is to combine many disks into a
single logical disk. Hardware solutions such as RAID are still the most popular, but
the current trend is moving toward implementing as much of this logic in software as
possible. These software implementations typically allowing rich functionality like
growing or shrinking the logical device by adding or removing disks on the fly. Of
course, a storage layer that can grow or shrink on the fly requires a file system that
can do the same: the fixed-size array of inode blocks used by Unix file systems does
not work well in such environments. Separating disk management from the file system
may be the cleanest design, but the complex interface between the two has led some
systems, like Sun’s ZFS, to combine them.

Other features: snapshotting and backup.

Exercises

Exercise: why panic in balloc? Can we recover?
Exercise: why panic in ialloc? Can we recover?
Exercise: inode generation numbers.



