
PC hardware and x86

3/3/08
Frans Kaashoek

MIT
kaashoek@mit.edu

A PC

 how to make it to do something useful?

Outline

•  PC architecture
•  x86 instruction set
•  gcc calling

conventions
•  PC emulation

Illustrate a few
big CS ideas

PC board

The von Neumann model

•  I/O: communicating data to and from devices
•  CPU: digital logic for performing computation
•  Memory: N words of B bits

Central
Processing

Unit
Input/Output

Main
Memory

The stored program computer

•  Memory holds instructions and data
•  CPU interpreter of instructions

for (;;) {
 next instruction
}

instruction

instruction

instruction

data
data

data

CPU
Main memory

x86 implementation

•  EIP is incremented after each instruction
•  Instructions are different length
•  EIP modified by CALL, RET, JMP, and conditional JMP

instruction

instruction

instruction

data
data

data 0

232-1

Registers for work space

•  8, 16, and 32 bit versions
•  By convention some registers for special purposes
•  Example: ADD EAX, 10
•  Other instructions: SUB, AND, etc.

EFLAGS register

•  Test instructions: TEST EAX, 0
•  Conditional JMP instructions: JNZ address

Memory: more work space

•  Memory instructions: MOV, PUSH, POP, etc
•  Most instructions can take a memory address

Stack memory + operations

•  Stack grows down
•  Use to implement procedure calls

More memory
•  8086 16 registers and 20-bit bus addresses
•  The extra 4 bits come segment registers

–  CS: code segment, for EIP
–  SS: stack segment, for SP and BP
–  DS: data segment for load/store via other registers
–  ES: another data segment, destination for string ops
–  For example: CS=4096 to start executing at 65536

•  Makes life more complicated
–  Cannot use 16 bit address of stack variable as pointer
–  Pointer arithmetic and array indexing across segment

boundaries
–  For a far pointer programmer must include segment reg

And more memory

•  80386: 32 bit data and bus addresses
•  Now: the transition to 64 bit addresses
•  Backwards compatibility:

–  Boots in 16-bit mode, and boot.S switches to 32-
bit mode

–  Prefix 0x66 gets you 32 bit mode:
•  MOVW = 0x66 MOVW

–  .code32 in boot.S tells assembler to insert 0x66
•  80386 also added virtual memory addresses

–  Topic of lab lecture 3

I/O space and instructions

•  8086: Only 1024 I/O addresses
•  Interrupts in lab 3 lecture

Memory-mapped I/O
•  Use normal addresses

–  No need for special instructions
–  No 1024 limit
–  System controller routes to device

•  Works like “magic” memory
–  Addressed and accessed like memory
–  But does not behave like memory
–  Reads and writes have “side effects”
–  Read result can change due to external events

Memory layout

x86 instruction set

•  Instructions classes:
–  Data movement: MOV, PUSH, POP, …
–  Arithmetic: TEST, SHL, ADD, …
–  I/O: IN, OUT, …
–  Control: JMP, JZ, JNZ, CALL, RET
–  String: REP, MOVSB, …
–  System: IRET, INT, …

•  Intel architecture manual Volume 2
–  Intel syntax: op dst, src
–  AT&T (gcc/gas) syntax: op src, dst

gcc procedure calling conventions

•  After CALL instruction:
–  %eip points to first instructions
–  %esp + 4 points at first argument
–  %esp points at return address

•  After RET instruction:
–  %eip contains return address
–  %esp points at arguments pushed by caller
–  %eax contains return value, %ecx, %edx may be

trashed
–  %ebp, %ebx, %esi, %edi must be as before call

Caller saved

Callee saved

gcc does more: EBP
Prologue:
pushl %ebp
movl %esp, %ebp

Epilogue:
movl %ebp, %esp
popl %ebp

•  Saved %ebp’s form a chain, can walk stack
•  Arguments and locals at fixed offsets from EBP

Example

From C to running program

•  Compiler, assembler, linker, and loader

.o .c .asm
gcc gas

.o .c .asm
gcc gas

a.out ld
loader

memory

Development using PC emulator

•  Bochs PC emulator
– does what a real PC

does
– Only implemented in

software!
•  Runs like a normal

program on “host”
operating system

 PC emulator

Linux

PC

JOS

Emulation of memory

Emulation of CPU

Emulation x86 memory

Emulating devices

•  Hard disk: using a file of the host
•  VGA display: draw in a host window
•  Keyboard: hosts’s keyboard API
•  Clock chip: host’s clock
•  Etc.

Summary

•  For lab: PC and x86
•  Illustrate several big ideas:

– Stored program computer
– Stack
– Memory-mapped I/O
– Software = hardware

