xv6-riscv/kernel/trap.c
2023-10-16 17:28:59 -06:00

157 lines
4.0 KiB
C

#include "types.h"
#include "param.h"
#include "memlayout.h"
#include "riscv.h"
#include "spinlock.h"
#include "proc.h"
#include "defs.h"
extern char trampoline[], uservec[], userret[];
// in kernelvec.S, calls kerneltrap().
void kernelvec();
extern int devintr();
//
// handle an interrupt, exception, or system call from user space.
// called from trampoline.S
//
void usertrap(void)
{
int which_dev = 0;
if((r_sstatus() & SSTATUS_SPP) != 0)
panic("usertrap: not from user mode");
// send interrupts and exceptions to kerneltrap(),
// since we're now in the kernel.
w_stvec((uint64)kernelvec);
struct proc *p = myproc();
// save user program counter.
p->trapframe->epc = r_sepc();
if(r_scause() == 8){
// system call
if(killed(p))
exit(-1);
// sepc points to the ecall instruction,
// but we want to return to the next instruction.
p->trapframe->epc += 4;
// an interrupt will change sepc, scause, and sstatus,
// so enable only now that we're done with those registers.
intr_on();
syscall();
} else if((which_dev = devintr()) != 0){
// ok
} else {
printstr("usertrap(): unexepected scause ");
printptr(r_scause());
printstr(" pid=");
printint(p->pid);
printstr(" sepc=");
printptr(r_sepc());
printstr(" stval=");
printptr(r_stval());
printstr("\n");
setkilled(p);
}
if(killed(p))
exit(-1);
// give up the CPU if this is a timer interrupt.
if(which_dev == 2)
yield();
usertrapret();
}
//
// return to user space
//
void
usertrapret(void)
{
struct proc *p = myproc();
// we're about to switch the destination of traps from
// kerneltrap() to usertrap(), so turn off interrupts until
// we're back in user space, where usertrap() is correct.
intr_off();
// send syscalls, interrupts, and exceptions to uservec in trampoline.S
uint64 trampoline_uservec = TRAMPOLINE + (uservec - trampoline);
w_stvec(trampoline_uservec);
// set up trapframe values that uservec will need when
// the process next traps into the kernel.
p->trapframe->kernel_satp = r_satp(); // kernel page table
p->trapframe->kernel_sp = p->kstack + PGSIZE; // process's kernel stack
p->trapframe->kernel_trap = (uint64)usertrap;
p->trapframe->kernel_hartid = r_tp(); // hartid for cpuid()
// set up the registers that trampoline.S's sret will use
// to get to user space.
// set S Previous Privilege mode to User.
unsigned long x = r_sstatus();
x &= ~SSTATUS_SPP; // clear SPP to 0 for user mode
x |= SSTATUS_SPIE; // enable interrupts in user mode
w_sstatus(x);
// set S Exception Program Counter to the saved user pc.
w_sepc(p->trapframe->epc);
// tell trampoline.S the user page table to switch to.
uint64 satp = MAKE_SATP(p->pagetable);
// jump to userret in trampoline.S at the top of memory, which
// switches to the user page table, restores user registers,
// and switches to user mode with sret.
uint64 trampoline_userret = TRAMPOLINE + (userret - trampoline);
((void (*)(uint64))trampoline_userret)(satp);
}
// interrupts and exceptions from kernel code go here via kernelvec,
// on whatever the current kernel stack is.
void
kerneltrap()
{
int which_dev = 0;
uint64 sepc = r_sepc();
uint64 sstatus = r_sstatus();
uint64 scause = r_scause();
if((sstatus & SSTATUS_SPP) == 0)
panic("kerneltrap: not from supervisor mode");
if(intr_get() != 0)
panic("kerneltrap: interrupts enabled");
if((which_dev = devintr()) == 0){
printstr("scause ");
printptr(scause);
printstr("\nsepc=");
printptr(r_sepc());
printstr(" stval=");
printptr(r_stval());
printstr("\n");
panic("kerneltrap");
}
// give up the CPU if this is a timer interrupt.
if(which_dev == 2 && myproc() != 0 && myproc()->state == RUNNING)
yield();
// the yield() may have caused some traps to occur,
// so restore trap registers for use by kernelvec.S's sepc instruction.
w_sepc(sepc);
w_sstatus(sstatus);
}